УДК 621.391.63

ПОЛЯРИЗАЦИОННЫЙ ОПТИЧЕСКИЙ РЕФЛЕКТОМЕТР С ЛИНЕЙНОЙ ВАРИАЦИЕЙ ДЛИТЕЛЬНОСТИ ИМПУЛЬСА

В.А. Андреев, ректор ПГУТИ, д.т.н.

В.А Бурдин, проректор по науке и инновациям ПГУТИ, д.т.н. М.В. Дашков, доцент ПГУТИ, к.т.н.; mvd.srttc@gmail.com

Ключевые слова: поляризационная модовая дисперсия, поляризационный оптический рефлектометр, длина биений, длина корреляции, локализация, распределение.

Увеличение скорости передачи в оптическом канале до уровня 10 Гбит/с и выше приводит к тому, что одним из основных факторов, ограничивающих работоспособность волоконно-оптических линий передачи (ВОЛП) становится поляризационная модовая дисперсия (ПМД). Актуальной задачей при этом является локализация проблемных сегментов ВОЛП с повышенным уровнем ПМД с целью последующей модернизация линейно-кабельных сооружений. Для решения подобных задач используется поляризационный оптический рефлектометр. В статье рассматривается реализация подобного прибора, отличительная особенность которого — использование для измерений линейной вариации длительности зондирующих импульсов.

Введение. В настоящее время поляризационная модовая дисперсия оптических волокон (OB) является одним из основных факторов, ограничивающих протяженность регенерационных участков волоконно-оптических линий передачи (ВОЛП) и скорость передачи информации в оптическом канале [1, 2]. Для оценки максимальной протяженности регенерационного участка *L*, ограниченного ПМД, может быть использована следующая формула:

$$L = \frac{10^4}{\left(B \cdot D_{PMD}\right)^2},$$

где B — скорость передачи в оптическом канале, Гбит/с; D_{PMD} — коэффициент ПМД, пс / $\sqrt{\rm KM}$.

В результате можем получить оценочные значения, приведенные в таблице.

С учетом того, что на регенерационных участках действующих ВОЛП могут существовать ОВ с повышенным уровнем ПМД (например, в работе [3] было отмечено, что на ВОЛП, проложенных в период с 1997 по 2002 гг., для 19% оптических волокон $D_{PMD} > 0.5$ пс / $\sqrt{\text{км}}$), протяженность регенерационного участка может быть ограничена даже при скорости передачи 10 Гбит/с.

На современных ВОЛП, для которых типовые значения D_{PMD} в проложенных строительных длинах составляют порядка 0,1 пс / $\sqrt{\text{км}}$, ограничения на L могут возникнуть при скорости передачи 40 Гбит/с.

Величина ПМД на ВОЛП носит случайный характер и зависит не только от качества производства ОВ

и OK, но и от условий прокладки, внешних температурных и механических воздействий в процессе эксплуатации. Исследования на ВОЛП, введенных в эксплуатацию, показали, что основной вклад в результирующее значение ПМД линии передачи, как правило, вносят отдельные участки с повышенным уровнем ПМД, на которых OK подвергается либо внешним воздействиям, либо из-за включенных модулей компенсации дисперсии и т.п. [1, 2, 4]. Отсюда следует актуальность задачи локализации участков ВОЛП, характеризующихся повышенными значениями ПМД OB.

Принцип работы поляризационного оптического рефлектометра. Существует ряд методов измерения ПМД: метод анализа собственных значений матрицы Джонса; метод сферы Пуанкаре; метод фиксированного анализатора (метод сканирования длин волн); интерферометрический метод.

К основным недостаткам перечисленных методов следует отнести: необходимость размещения источника излучения и анализатора ПМД на двух сторонах тестируемой линии; возможность измерения только суммарного значения ПМД на линии; кроме того применяемое для этого оборудование не только достаточно дорогое но и, как правило, не всегда удобно для работы в полевых условиях.

Для нахождения распределения ПМД вдоль ВОЛП и локализации проблемных участков может быть использован поляризационный оптический рефлектометр обратного рассеяния (POTDR). Причем существуют несколько реализаций POTDR, отличающихся принципами работы [1, 2, 13—15].

Одна из возможных реализаций рефлектометра основывается на определении изменения состояния поляризации оптического излучения по результатам измерений длины биений и длины корреляции OB.

Длина биений L_B обусловливает протяженность OB, на которой сдвиг фазы поляризационных компонент составляет 2π , т.е.:

$$L_B = \frac{2\pi}{\Delta\beta} = \frac{\lambda}{\Delta n} \delta$$

где Δβ — двулучепреломление; Δ*n* — разность показателей преломления.

Длина корреляции L_c описывает случайную связь между двумя поляризационными модами и определяется как расстояние, на котором пространственная корреляция двулучепреломления уменьшается в $1/e^2$ раз.

Значение ПМД ОВ можно выразить через L_B и L_C в виде [1,2]

Таблица

Скорость передачи, Гбит/с —	Максимальная протяженность регенерационного участка, км, при D_{PMD}			
	1 пс / √км	0,5 пс / √км	0,2 пс / √км	0,1 пс / √км
10	100	400	2500	10000
40	6,25	25	156,25	625

$$PMD^{2} = 2\left(\frac{\lambda}{c}\frac{L_{C}}{L_{B}}\right)^{2}\left(\frac{L}{L_{C}} + \exp\left(-\frac{L}{L_{C}}\right) - 1\right),$$

где L — протяженность измеряемого участка; λ — длина волны излучения; c — скорость света в вакууме.

Для определения *L*_C обычно применяют соотношение [2]

$$r_R(z) = \frac{16\pi^2}{3L_B^2} \exp\left(-\frac{|z|}{L_C}\right),$$

где $r_R(z)$ — автокорреляционная функция двулучепреломления, рассчитанная по распределению L_B вдоль OB.

Таким образом, задачу можно свести к нахождению распределения L_B вдоль OB.

В самом простом случае POTDR представляет собой оптический рефлектометр, подключаемый к OB через поляризатор. Сигнал обратного рассеяния, проходя через поляризатор, будет испытывать периодические колебания с частотой, кратной L_B . Мощность потока обратного рассеяния, прошедшего через поляризатор, на ближнем конце при зондировании прямоугольными импульсами можно записать в виде

$$P_P(z) = P_{S0} \exp(-2\alpha z) \left[1 + \frac{\sin(Q)}{Q} \cos(4\pi z / L_B) \right], \qquad (1)$$
$$Q = \frac{\pi v_g T_0}{L_p},$$

где P_{s0} — суммарная мощность потока, рассеянного на ближнем конце и распространяющегося в обратном направлении; α — коэффициент затухания OB; v_g — групповая скорость; T_0 — длительность зондирующего импульса.

Из ф-лы (1) следует, что: сигнал изменяется вдоль OB с периодом, прямо-пропорциональным L_B ; относительный размах колебаний прямо пропорционален L_B и обратно пропорционален T_0 .

Такие выводы хорошо согласуются с экспериментальными данными. В качестве примера на рис. 1 приведена рефлектограмма POTDR. Тестовый макет линии состоял из сегментов OB с различными L_B . Измерения производились при $T_0 = 30$ нс.

Алгоритмы обработки рефлектограмм, полученных при измерении импульсами малой длительности (протяженность участка OB, занимаемого импульсом, меньше L_B), для определения L_B широко известны. Например, одним из вариантов является подсчет количества пересечений рефлектограммы и определенного заданного уровня (Level Cross Ratio — LCR). В [7] было отмечено, что количество максимумов на единицу длины OB значительно зависит от степени связи поляризованных мод, и поэтому для расчетов предлагается использовать следующую формулу:

$$L_B = \frac{1}{c_1} \left(\frac{2L}{N} - c_2 \right),$$

где N — количество максимумов; L — длина анализируемого участка OB; $c_1 = 0.91$; $c_2 = 1.65$.

Особенности измерений при зондировании импульсами увеличенной длительности. В работах [1,2, 13] декларировалось, что для измерения L_B необходимо использовать зондирующие импульсы, пространственное разрешение которых много меньше L_B . Для типовых телекоммуникационных ОВ такими можно считать импульсы длительностью порядка 5—30 нс. При этом полагалось, что при измерении импульсами большей длительности разрешающая способность снижается настолько, что определить L_B не представляется возможным. Вместе с тем, как следует из (1), переменная составляющая с периодом, кратным L_B , входит в состав сигнала обратного рассеяния вне зависимости от T_0 .

Основной недостаток измерения импульсами малой длительности — низкий динамический диапазоне POTDR и, следовательно, ограниченная дальность действия, что затрудняет измерения на элементарных кабельных участках ВОЛП, протяженность которых может составлять от 80 до 160 км.

В работах [10—12] была теоретически обоснована и экспериментально подтверждена возможность использования для измерения L_B импульсов повышенной длительности (порядка 10 мкс). Было показано, что с увеличением T_0 увеличивается и динамический диапазон измерений L_B . В результате моделирования и экспериментальных исследований характеристик обратного рассеяния ОВ в зависимости от T_0 было выявлено, что при зондировании импульсами большой длительности колебания сигнала обратного рассеяния с периодом, кратным L_B , имеют место как по шкале расстояний, так и по шкале длительностей зондирующих импульсов. При этом размах колебаний коррелируется с их периодом.

Обрабатывая зависимость мощности обратного потока от T_0 , можно оценить L_B в некоторой точке линии. Это дает возможность более корректно обрабатывать данные прямых измерений, получать дополнительные способы оценки погрешностей и, как следствие, увеличивать точность и/или динамический диапазон измерений распределений L_B вдоль OB.

Анализ представленных теоретических предположений и экспериментальных данных позволил предложить метод измерения, в основе которого лежат следующие основные положения:

1. Измерения характеристик обратного рассеяния OB предлагается проводить для ряда заданных линейной зависимостью значений T₀.

2. Ширина интервала ΔT , в пределах которого варьируется T_0 , значительно превышает время распространения импульса на длине биений: $v_g \Delta T > (3...5)L_B$, где v_g — групповая скорость распространения излучения в волокне.

3. Ширина интервала существенно меньше среднего значения T_0 на интервале: $\Delta T \ll T_0$.

При реализации данного метода предварительно, для каждого из заданных значений T_0 измеряются усредненные характеристики обратного рассеяния ОВ. Выделяется переменная составляющая сигнала и оценивается L_B по шкале расстояний и шкале длительностей зондирующего импульса. Результаты корректируют, определяя погрешности оценок и поправки по корреляции оценок, полученных на разных шкалах, а также по их корреляции с размахом колебаний.

Для апробации предложенного метода изготовлен опытный образец поляризационного оптического рефлектометра,

работающего во временной области, и позволяющего производить измерения с линейной модуляцией *T*₀.

Структурная схема POTDR приведена на рис. 2.

Генератор импульсов 1 формирует последовательность прямоугольных импульсов со средней длительностью 10 или 20 мкс, при этом интервал изменения длительности составляет 100 и 200 нс с шагом 10 и 20 нс, соответственно.

Для снижения степени деполяризации излучения при распространении в качестве источника излучения был выбран узкополосный лазерный диод 2 со следующими характеристиками: длина волны — 1550 нм; ширина спектра (по уровню –20 дБ) — < 0,2 нм.

Разделение прямого и обратно-рассеянного потоков осуществляется оптическим циркулятором 3. На входе фото-

Puc. 4

приемного устройства 5 установлен оптический поляризатор 4 с коэффициентом подавления –40 дБ. В блоке анализа 6 происходит обработка полученного сигнала в соответствии с разработанным алгоритмом.

На рис. 3 представлен опытный образец поляризационного рефлектометра.

Типовые рефлектограммы, получаемые в результате измерений, показаны на рис. 4. На рис. 4, *а* представлена рефлектограмма мощности сигнала обратного рассеяния по шкале расстояний и по шкале длительности импульса; на рис. 4, *б* — рефлектограмма, полученная для фиксированной длительности импульса.

Для обработки полученных данных разработан алгоритм, в основе которого лежат следующие положения:

1. В фиксированных точках x_i рефлектограммы по шкале длительности импульса определяются период и длина биений.

2. В области точек *x_i* определяется среднее значение длины биений по шкале расстояний.

3. Полученные оценки L_B и среднего значения L_B сопоставляются для каждой точки x_i , и далее оценивается погрешность измерений.

В результате определяется распределение L_B по длине OB, позволяющее локализовать участки с пониженным значением L_B и, следовательно, с вероятностью повышенного уров-

Puc. 3

ня ПМД. Рис. 5 иллюстрирует результаты измерения ПМД на заводской длине OB Corning[®] LEAF[®] протяженностью 12 км, не содержащей неоднородностей. В целом испытания опытного образца рефлектометра подтвердили наличие выявленных ранее закономерностей характеристик обратного рассеяния OB, измеряемых при зондировании импульсами увеличенной длительности.

Заключение. Предварительные испытания опытного образца поляризационного оптического рефлектометра с линейной вариацией длительности импульсов продемонстрировали потенциальные возможности метода, достоинством которого является оценивание погрешности измерения L_B по различным критериям.

Реализация возможностей предложенного метода требует совершенствования алгоритмов обработки результатов прямых измерений путем повышения точности выделения периодической составляющей в сигнале как по шкале расстояний, так и по шкале длительности импульса. Для этого необходимо разработать методы и алгоритмы расчета ПМД по распределению L_B , а также усовершенствовать сам прибор для использования его в полевых условиях.

ЛИТЕРАТУРА

 Galtarossa A., Menyuk C.R. Polarization Mode Dispersion// Springer Science. — 2005. — 296 p.

- Rojers A. Polarization in optical fibers//Artech House.--
- 2008. 273 p.
 3. Barcelos S. "PMD field audit reveals investment losses", http://www.lightwaveonline.com.
- 4. Бродский М., Бородицкий М. и др. Шарнирно-секционная модель ПМД//Lightwave Russian Edition.— 2005.— № 1.— с. 24—28.
- Gisin N., Von der Weid J.P., Pellaux J.P. Polarization mode dispersion of short and long single-mode fibers // Journal of Lightwave Technology.— 1991.— Vol. 9.— p. 821—827.
- Corsi F., Galtarossa A., Palmieri L. Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers//Journal of Lightwave Technology.— 1999.— Vol. 17.— p. 1172—1178.
- Huttner B., Gisin B., Gisin N. Distributed PMD measurement with a polarization-OTDR in optical fibers // Journal of Lightwave Technology.— 1999.— Vol. 17. — Nº 10.— p. 1843—1848.
- Wuilpart M., Ravet G., Megret P., Blondel M. Polarization Mode Dispersion Mapping in Optical Fibers With a Polarization-OTDR//IEEE Photonic Technology Letters.— 2002.— Vol. 14. — № 12.— p. 1716—1718.
- Jasenek J. The use of Polarization Optical Time-Domain Reflectometry for the birefringence distribution measurement along the SM optical fiber//12 th International Scientific Conference Radioelectronics, Bratislava, Slovak Republic. 2002. – p. 234–238.
- Бурдин А.В., Бурдин В.А. Рефлектометрический способ измерений параметров ПМД оптических волокон с использованием зондирующих импульсов увеличенной длительности // Фотон-Экспресс. — 2006. — № 6 (54), — с. 72—77.
- Андреев В.А., Бурдин В.А., Бурдин А.В. Проблемы и методы локализации участков ВОЛП с повышенной поляризационной модовой дисперсией//Физика волновых процессов и радиотехнические системы. — 2008. — 3 (11), — с.131—139.
- Бурдин В.А., Бурдин А.В., Дашков М.В., Ромодин А.В. Динамический диапазон оптического рефлектометра при измерении длины биений оптических волокон импульсами увеличенной длительности//Фотон-Экспресс. 2008. № 5—6 (69—70). с. 69—70.
- Патент WO 2004/045113 Chen X. at al. Method of Evaluating Fiber PMD Using Polarization Optical Time Domain Reflectometry.
- 14. Патент US 7130496 Rogers A.J. Optical fibre backscatter polarimetry.
- Патент US 2008/0100828 A1 Cyr N., Chen H. Polarizationsensitive optical time domain reflectometer and method for determining PMD.

Получено 21.01.10

ИНФОРМАЦИЯ

«РОСТЕЛЕКОМ» РАСШИРЯЕТ ПОДКЛЮЧЕНИЕ К ЗАРУБЕЖНЫМ УЗЛАМ

2.

ОАО «Ростелеком» расширяет подключение к узлам сети IP/MPLS во Франкфурте-на-Майне до 40 Гбит/с и в Лондоне до 30 Гбит/с. Для компании это означает возможность увеличения объема пропускаемого интернет-трафика на площадках во Франкфурте-на-Майне (Deutscher Commercial Internet Exchange, DE-CIX) и Лондоне (London Internet Exchange, LINX), входящих в пятерку крупнейших мировых площадок обмена трафиком.

Данное расширение проведено в рамках программы по развитию международного сегмента сети связи «Ростелекома», направленной на повышение качество и надежность услуг.

В результате суммарная емкость подключений «Ростелекома» к международным площадкам обмена интернеттрафиком (в Амстердаме, Франкфурте-на-Майне, Лондоне, Стокгольме) возрастает до 90 Гбит/с.

За счет этого компания может заметно увеличить объем интернет-трафика, проходящего через Европу, а также расширить возможности для сотрудничества «Ростелекома» с операторами связи, интернет-провайдерами и поставщиками других телекоммуникационных услуг.

Рост емкости подключений «Ростелекома» к площадкам обмена соответствует высоким темпам увеличения доли «Ростелекома» на российском рынке магистральной передачи интернет-трафика, которая увеличилась более чем в три раза с 10% в 2007 году до 35% в 2009 г.

На сегодняшний день «Ростелекома» является основным российским оператором магистрального интернет-трафика. Партнером «Ростелекома» в данном проекте выступила компания TeliaSonera.